non-abelian, supersoluble, monomial
Aliases: C32⋊C6⋊C8, C12.87S32, He3⋊3(C2×C8), C32⋊1(S3×C8), He3⋊3C8⋊5C2, He3⋊4C8⋊4C2, C32⋊4C8⋊4S3, (C3×C12).35D6, C32⋊C12.2C4, C6.11(S3×Dic3), C3⋊Dic3.1Dic3, C4.13(C32⋊D6), (C4×He3).27C22, C3⋊S3⋊(C3⋊C8), C32⋊(C2×C3⋊C8), C3.2(S3×C3⋊C8), (C4×C3⋊S3).2S3, (C3×C6).1(C4×S3), (C4×C32⋊C6).4C2, (C2×C32⋊C6).1C4, (C2×He3).8(C2×C4), (C2×C3⋊S3).1Dic3, (C3×C6).1(C2×Dic3), C2.1(C6.S32), SmallGroup(432,76)
Series: Derived ►Chief ►Lower central ►Upper central
He3 — C32⋊C6⋊C8 |
Generators and relations for C32⋊C6⋊C8
G = < a,b,c,d | a3=b3=c6=d8=1, ab=ba, cac-1=a-1b-1, dad-1=ab-1, cbc-1=dbd-1=b-1, dcd-1=c-1 >
Subgroups: 371 in 85 conjugacy classes, 29 normal (25 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C2×C4, C32, C32, Dic3, C12, C12, D6, C2×C6, C2×C8, C3×S3, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C24, C4×S3, C2×C12, He3, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, S3×C8, C2×C3⋊C8, C32⋊C6, C2×He3, C3×C3⋊C8, C32⋊4C8, S3×C12, C4×C3⋊S3, C32⋊C12, C4×He3, C2×C32⋊C6, S3×C3⋊C8, C12.29D6, He3⋊3C8, He3⋊4C8, C4×C32⋊C6, C32⋊C6⋊C8
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, Dic3, D6, C2×C8, C3⋊C8, C4×S3, C2×Dic3, S32, S3×C8, C2×C3⋊C8, S3×Dic3, C32⋊D6, S3×C3⋊C8, C6.S32, C32⋊C6⋊C8
(1 31 52)(2 53 32)(3 25 54)(4 55 26)(5 27 56)(6 49 28)(7 29 50)(8 51 30)(10 64 69)(12 58 71)(14 60 65)(16 62 67)(17 47 39)(19 41 33)(21 43 35)(23 45 37)
(1 52 31)(2 32 53)(3 54 25)(4 26 55)(5 56 27)(6 28 49)(7 50 29)(8 30 51)(9 68 63)(10 64 69)(11 70 57)(12 58 71)(13 72 59)(14 60 65)(15 66 61)(16 62 67)(17 47 39)(18 40 48)(19 41 33)(20 34 42)(21 43 35)(22 36 44)(23 45 37)(24 38 46)
(1 72 47 5 68 43)(2 44 69 6 48 65)(3 66 41 7 70 45)(4 46 71 8 42 67)(9 35 31 59 17 56)(10 49 18 60 32 36)(11 37 25 61 19 50)(12 51 20 62 26 38)(13 39 27 63 21 52)(14 53 22 64 28 40)(15 33 29 57 23 54)(16 55 24 58 30 34)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
G:=sub<Sym(72)| (1,31,52)(2,53,32)(3,25,54)(4,55,26)(5,27,56)(6,49,28)(7,29,50)(8,51,30)(10,64,69)(12,58,71)(14,60,65)(16,62,67)(17,47,39)(19,41,33)(21,43,35)(23,45,37), (1,52,31)(2,32,53)(3,54,25)(4,26,55)(5,56,27)(6,28,49)(7,50,29)(8,30,51)(9,68,63)(10,64,69)(11,70,57)(12,58,71)(13,72,59)(14,60,65)(15,66,61)(16,62,67)(17,47,39)(18,40,48)(19,41,33)(20,34,42)(21,43,35)(22,36,44)(23,45,37)(24,38,46), (1,72,47,5,68,43)(2,44,69,6,48,65)(3,66,41,7,70,45)(4,46,71,8,42,67)(9,35,31,59,17,56)(10,49,18,60,32,36)(11,37,25,61,19,50)(12,51,20,62,26,38)(13,39,27,63,21,52)(14,53,22,64,28,40)(15,33,29,57,23,54)(16,55,24,58,30,34), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)>;
G:=Group( (1,31,52)(2,53,32)(3,25,54)(4,55,26)(5,27,56)(6,49,28)(7,29,50)(8,51,30)(10,64,69)(12,58,71)(14,60,65)(16,62,67)(17,47,39)(19,41,33)(21,43,35)(23,45,37), (1,52,31)(2,32,53)(3,54,25)(4,26,55)(5,56,27)(6,28,49)(7,50,29)(8,30,51)(9,68,63)(10,64,69)(11,70,57)(12,58,71)(13,72,59)(14,60,65)(15,66,61)(16,62,67)(17,47,39)(18,40,48)(19,41,33)(20,34,42)(21,43,35)(22,36,44)(23,45,37)(24,38,46), (1,72,47,5,68,43)(2,44,69,6,48,65)(3,66,41,7,70,45)(4,46,71,8,42,67)(9,35,31,59,17,56)(10,49,18,60,32,36)(11,37,25,61,19,50)(12,51,20,62,26,38)(13,39,27,63,21,52)(14,53,22,64,28,40)(15,33,29,57,23,54)(16,55,24,58,30,34), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72) );
G=PermutationGroup([[(1,31,52),(2,53,32),(3,25,54),(4,55,26),(5,27,56),(6,49,28),(7,29,50),(8,51,30),(10,64,69),(12,58,71),(14,60,65),(16,62,67),(17,47,39),(19,41,33),(21,43,35),(23,45,37)], [(1,52,31),(2,32,53),(3,54,25),(4,26,55),(5,56,27),(6,28,49),(7,50,29),(8,30,51),(9,68,63),(10,64,69),(11,70,57),(12,58,71),(13,72,59),(14,60,65),(15,66,61),(16,62,67),(17,47,39),(18,40,48),(19,41,33),(20,34,42),(21,43,35),(22,36,44),(23,45,37),(24,38,46)], [(1,72,47,5,68,43),(2,44,69,6,48,65),(3,66,41,7,70,45),(4,46,71,8,42,67),(9,35,31,59,17,56),(10,49,18,60,32,36),(11,37,25,61,19,50),(12,51,20,62,26,38),(13,39,27,63,21,52),(14,53,22,64,28,40),(15,33,29,57,23,54),(16,55,24,58,30,34)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 8A | ··· | 8H | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 12I | 12J | 24A | ··· | 24H |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | ··· | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 9 | 9 | 2 | 6 | 6 | 12 | 1 | 1 | 9 | 9 | 2 | 6 | 6 | 12 | 18 | 18 | 9 | ··· | 9 | 2 | 2 | 6 | 6 | 6 | 6 | 12 | 12 | 18 | 18 | 18 | ··· | 18 |
44 irreducible representations
Matrix representation of C32⋊C6⋊C8 ►in GL10(𝔽73)
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
72 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 72 |
0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
72 | 72 | 72 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 72 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 72 | 0 | 0 | 0 | 0 |
53 | 0 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 53 | 0 | 19 | 0 | 0 | 0 | 0 | 0 | 0 |
39 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 39 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 46 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 27 | 27 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 46 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 27 | 27 |
0 | 0 | 0 | 0 | 0 | 0 | 46 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 27 | 27 | 0 | 0 |
G:=sub<GL(10,GF(73))| [0,72,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72],[0,0,1,72,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,1,1,72,0,0,0,0,0,0,0,1,0,72,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,72,0,0],[53,0,39,0,0,0,0,0,0,0,0,53,0,39,0,0,0,0,0,0,19,0,20,0,0,0,0,0,0,0,0,19,0,20,0,0,0,0,0,0,0,0,0,0,46,27,0,0,0,0,0,0,0,0,0,27,0,0,0,0,0,0,0,0,0,0,0,0,46,27,0,0,0,0,0,0,0,0,0,27,0,0,0,0,0,0,46,27,0,0,0,0,0,0,0,0,0,27,0,0] >;
C32⋊C6⋊C8 in GAP, Magma, Sage, TeX
C_3^2\rtimes C_6\rtimes C_8
% in TeX
G:=Group("C3^2:C6:C8");
// GroupNames label
G:=SmallGroup(432,76);
// by ID
G=gap.SmallGroup(432,76);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,36,58,571,4037,537,14118,7069]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^6=d^8=1,a*b=b*a,c*a*c^-1=a^-1*b^-1,d*a*d^-1=a*b^-1,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations